Results of TEM Analysis C. H. van der Bogert Institut für Planetologie, Münster, Germany

FC3.0.2.2.3

Slice	Description			
#17	•	Amorphous material with rounded crystalline metallic grains (<~200nm)		
	•	Qualitative EDX analyses of glass indicate mixtures of Si, O, Mg, Fe, Ni and S		

C2054,0,35,16,9

Slice	Description	
#41	 Amorphous material with rounded crystalline metallic grains (<100 nm) 	
	 Small FeNi and FeS grains (<100 nm) 	
	 Qualitative EDX analyses of glass/metallic grains indicate mixtures of Si, O, 	
	Mg, Fe, Ni and S	
#42	 Amorphous material with rounded crystalline metallic grains (<100 nm) 	
	 Qualitative EDX analyses of glass vary from pure Si and O to Si and O mixed 	
	with primarily Mg and Fe, sometimes with Cr	
#44	 Also analyzed with TOF-SIMS 	
	 Amorphous material with rounded crystalline metallic grains (<100 nm) 	
	 Qualitative EDX analyses of glass vary from pure Si and O to Si and O mixed 	
	with primarily Mg and Fe	
	 Section also contains larger (1 x 0.5 μm) and smaller Ti, O-rich grains. These 	
	appear to be contaminants.	

C2054,0,35,24,5

Slice	Description			
#21	•	Similar to C2054,0,35,16,9		
	•	Amorphous material with rounded crystalline metallic grains (<100 nm)		
	-	Qualitative EDX analyses of glass/metallic grains indicate mixtures of Si, O,		
		Mg, Fe, Ni and S, sometimes with Cr		
	•	One Cr-rich metallic grain was observed (~100 nm in diameter)		

C2004,1,44,4,5

Slice	Description	
#47	•	Also analyzed with TOF-SIMS
	-	Amorphous material with rounded crystalline metallic grains (<100 nm)
	-	Qualitative EDX analyses of glass/metallic grains indicate mixtures of Si, O,
		Mg, Fe, Ni and S
	-	At one end of the particle is a calcite grain $(1.6 \times 0.5 \mu m)$, identified by its
		diffraction pattern and EDX composition. Adjacent to this grain is a smaller Ti,
		O-rich crystalline phase. Both appear to be contaminants.
		Reference: van der Bogert, Golla-Schindler and Stephan (2007) MAPS 43, A153.